New, Stable Isomers of $[C_2H_4O]^{+}$, and $[C_2H_4O_2]^{+}$, the Radical Cations **[CH,COH]+* and [CH,OCOH]+***

Johan K. Terlouw*a, Joke Wezenberg,a Peter C. Burgers,b and John L. Holmes*b

⁸Analytical Chemistry Laboratory, University of Utrecht, Croesestraat 77A, 3522 AD, Utrecht, The Netherlands Chemistry Department, University of Ottawa, Ottawa, Ontario KIN 984, Canada

The ions $[CH_3COH]^+$ and $[CH_3OCOH]^+$ have been characterised by their collisional activation mass spectra and their heats of formation were measured as 865 \pm 20 and 661 \pm 5 kJ mol⁻¹ respectively; [CH₃COH]++ is the reacting configuration for H \cdot loss from [CH₂=CHOH] $^+$.

A combination of mass spectrometric measurements on dissociating and non-dissociating gas-phase cations has recently led to the identification and energetics of stable ions of unconventional structure, whose existence had been predicted **by**

ab initio calculations. For example the radical cation [CH₂OH₂]⁺, an isomer of ionised methanol,¹ and a wide variety of analogues $[C_nH_{2n} \cdot XH]^+$ $(X = OH, NH_2, SH,$ halogen, *etc.*) have been both predicted by calculation² to be stable species and observed by experiment.' Ionised oxycarbenes, although postulated as intermediates in fragmentation pathways, $3,4$ have only lately been recognised as stable species by both theory⁵ and experiment.⁶ As an extension of our observations of $[COH]^+$ and $[C(OH)_2]^+$ we report here two oxycarbenes, **[CH,COH]+*** and **[CH,OCOH]+*,** new isomers for the intensively studied systems $[C_2H_4O]^+$ (ref. 7) and $[C_2H_4O_2]^+$ (ref. 8). $[CH_3COH]^+$ was suggested as an intermediate species in the dissociative ionisation of pyruvic acid by Turro *et al.* in 1967³ but an *ab initio* study by Bouma *et al.* in **19799** predicted it to be a stable ion in the gas phase, with a heat of formation, ΔH_1° of 830 kJ mol⁻¹.

The above dissociation of pyruvic acid, loss of **CO,** from the molecular ion, does indeed produce **[CH,COH]+*.**

We had earlier concluded¹⁰ that this ion had the vinyl alcohol structure **[CH,=CHOH]+-** because the shape of the metastable peak for **H*** loss from the ion was the same as that for ions *known* to possess the structure **[CH,=CHOH]+*.** The recent *ab initio* calculations,⁹ however, indicate that $[CH₂=$ **CHOH]+*** ions isomerise to **[CH,COH]+.** as the reacting configuration leading to the formation of **[CH,CO]+.** This $[C_2H_3O]^+$ daughter has been shown to be the acetyl cation.¹¹ Thus this metastable peak, instead of being solely characteristic of **[CH,=CHOH]+*** ions, is indicative of either these and/or **[CH,COH]+*.** Distinguishing between these isomers therefore must rest upon examination of ions of *low* internal energy content, preferably those generated *via metastable* dissociation of their precursors. Figure 1 shows the structure-characteristic m/z **25**—30 region of the collisional activation **(C.A.)** mass spectra of **[CH,COH]+-** and **[CH,=CHOH]+*** produced from appropriate metastable fragmentations. The former displays almost no signal at m/z 30 and 27 (loss of :CH₂ and OH· respectively), both of which are characteristic of **[CH,=** CHOH]⁺⁺. The loss of C_2H_4 from ionised 1-methylcyclopropan-1-ol also generates $[CH₃COH]⁺$ (by analogy with $[HCOH]^{+}$ formation from cyclopropano¹²) but $[CH_2=$ **CHOH]+*** is cogenerated.

The heat of formation of **[CH,COH]+*** was obtained from the appearance energy **(A.E.)** of *m/z* **44** from **CH,COCOOH,** pyruvic acid, *3* 10.4 eV measured using energy-selected electrons.¹³ Note that only a lower limit could be assessed because of $[^{13}CCH_3O]^+$ contributions. ΔH_1° [CH₃COCOOH] = -548 kJ mol⁻¹ [by additivity¹⁴ and using -131 kJ mol⁻¹ as the increment for **CO-(CO)(O),** midway between those for **CO-(C)(O)** and **CO-(CO)(C)**], ΔH_f° [CO₂] = -394 kJ mol⁻¹ (ref. 15) whence ΔH_f° [CH₃COH]⁺ = 849 kJ mol⁻¹ in good agreement with the calculated value, 830 kJ mol⁻¹ (ref. 9). The **A.E.** of the metastable peak accompanying reaction **(1)** was

$$
CH3COCOOH+ \rightarrow [C2H4O]+ + CO2
$$
 (1)

also measured¹⁶ and was estimated to be 10.7 \pm 0.2 eV, in fair agreement with the above value. In view of these uncertainties we propose an experimentally derived ΔH_f° of 865 \pm 20 kJ $mol⁻¹.$

The ion **[CH30COH]+-** was readily produced *via* the dissociative ionisation of dimethyl carbonate, **(CH,O),CO,** by loss of CH₂O. The ion is easily identified by means of its very structure-characteristic **C.A.** mass spectrum which is unlike that of any reported $[C_2H_4O_2]^+$ isomer.⁸ The C.A. mass spectrum is dominated by m/z **45**, $[CH_3-O-Č=OH] \rightarrow CH_3 +$ $[O=C-OH]$, a direct bond cleavage. A second unique character-

Figure 1. Partial collisional activation mass spectra of [CH₃COH]⁺ (from the metastable peak for the loss of **CO,** from ionised pyruvic acid) and **[CH,=CHOH]+'** (from the metastable peak for the loss of C_2H_4 from ionised ethyl vinyl ether).

istic is m/z 16, $[CH_4]^{+\dagger}$ (relative abundances: m/z 45, 100%; *m/z* **43, 7%;** *m/z* **31, 3%;** *m/z* **29, 10%;** *m/z* **16,** *5%,* and m/z **15, 7%).** The above CH₃[•] loss is also observed in the metastable ion mass spectrum (average kinetic energy release, $(T>$, = 70 meV) and the A.E. of the metastable peak $(13.3 \pm 0.2 \text{ eV})$ shows that this reaction requires an excess energy of *ca.* 1 eV above the products $[O=C-OH]$, $\Delta H_f^o =$ $590 \text{ kJ} \text{ mol}^{-1}$ (ref. 15) and $\text{[CH}_3\text{·}$], $\Delta H_f^\circ = 142 \text{ kJ} \text{ mol}^{-1}$ (ref¹15) ΔH_1° [(CH₃O)₂CO] = -568 kJ mol⁻¹ (ref. 14) [from ΔH_1° $(CH₃CH₂O)₂O = -639 \text{ kJ} \text{ mol}^{-1}$ (ref. 17) and two additivity increments for replacing (CH_3CH_2-O) by $(CH_3-O)^{14}$ 35.5 kJ mol⁻¹ each]. This critical energy is similar to that observed for the dissociation of ionised dihydroxycarbene.⁶ ΔH_f° for $[CH₃OCOH]⁺$ was measured to be 661 \pm 5 kJ mol⁻¹ from A.E. m/z 60 = 11.56 \pm 0.05 eV (energy-selected electrons¹³) and A.E. of the metastable peak m/z 90 $\rightarrow m/z$ 60 = 11.5 \pm **0.2** eV.

J. K. T. and J. **W.** thank the Netherlands Organisation for the advancement of Pure Research **(Z.W.O.)** and **P. C.** B. acd **J. H.** thank the Natural Sciences and Engineering Research Council of Canada for continuing financial support. J. K. T., J. CHEM. SOC., CHEM. COMMUN., I983

P. *C.* B., and J. **L.** H. also thank the NATO Scientific Affairs Division for a collaborative research award.

Received, 21st June 1983; Corn. 821

References

- 1 J. L. Holmes, F. P. Lossing, J. K. Terlouw, and **P.** C. Burgers, *J. Am. Chem. SOC.,* 1982, **104,** 2931; *Can. J. Chem.,* 1983, in the press.
- 2 W. J. Bouma, J. K. MacLeod, R. H. Nobes, and L. Radom, *Znt. J. Mass Spectrom. Ion Phys.,* 1983,46, 235, and references cited therein.
- 3 N. J. Turro, D. *S.* Weiss, W. F. Haddon, and F. W. McLafferty, *J. Am. Chem. SOC.,* 1967, **89,** 3370.
- **4 J.** H. Beynon, R. A. Saunders, and **A.** E. Williams, 'The Mass Spectra of Organic Molecules,' Elsevier, Amsterdam, 1968, pp. 242, 367.
- *5* W. **J.** Bouma, J. K. MacLeod, and L. Radom, *Int. J. Mass Spectrom. Ion Phys.,* 1980, *33,* 87.
- 6 P. C. Burgers, **A.** A. Mommers, and **J.** L. Holmes, *J. Am. Chem. SOC.,* 1983, in the press.
- 7 W. J. Bouma, **J.** K. MacLeod, and L. Radom, *J. Chem. SOC., Chem. Commun.,* 1978, 724, and references cited therein.
- 8 **J.** K. Terlouw, C. *G.* de Koster, W. Heerma, **J.** L. Holmes, and P. C. Burgers, *Org. Mass Spectrom.,* 1983, **18,** 222.
- 9 W. **J.** Bouma, J. **K.** MacLeod, and L. Radom, *J. Am. Chem. SOC.,* 1979, **101,** 5540.
- 10 J. L. Holmes and **J,** K. Terlouw, *Can. J. Chem.,* 1975,53,2076.
- 11 P. *C.* Burgers, **J.** L. Holmes, **J.** E. Szulejko, **A. A.** Mommers, and J. K. Terlouw, *Org. Mass Spectrom.,* 1983, **18,** 254.
- 12 C. Wesdemiotis and F. **W.** McLafferty, *Tetrahedron Lett.,* 1981, *22,* 3479.
- 13 F. P. Lossing and J. C. Traeger, *Int. J. Mass Spectrom. Ion Phys.,* 1976, **19,** 9.
- 14 S. W. Benson, F. R. Cruickshank, D. M. Golden, *G.* R. Haugen, H. E. O'Neal, **A. S.** Rodgers, R. Shaw, and R. Walsh, *Chem. Rev.,* 1969, **69,** 279.
- 15 H. M. Rosenstock, K. Draxl, B. W. Steiner, and **J.** T. Herron, *J. Phys. Chem.,* Ref. Data Suppl. 6, 1977, 1.
- 16 P. C. Burgers and **J.** L. Holmes, *Org. Mass Spectrom.,* 1982, **17,** 123.
- 17 J. **B.** Pedley and J. Rylance, Computer analysed thermochemical data ; organic and organometallic compounds, University of Sussex, 1977.